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ABSTRACT

Theory of Mind is an essential ability of humans to infer the mental states of others. Here we provide
a coherent summary of the potential, current progress, and problems of deep learning approaches to
Theory of Mind. We highlight that many current findings can be explained through shortcuts. These
shortcuts arise because the tasks used to investigate Theory of Mind in deep learning systems have
been too narrow. Thus, we encourage researchers to investigate Theory of Mind in complex open-
ended environments. Furthermore, to inspire future deep learning systems we provide a concise
overview of prior work done in humans. We further argue that when studying Theory of Mind with
deep learning, the research’s main focus and contribution ought to be opening up the network’s
representations. We recommend researchers to use tools from the field of interpretability of AI to
study the relationship between different network components and aspects of Theory of Mind.

Keywords Theory of mind · artificial intelligence · reinforcement learning · deep learning

1 Introduction

Rapid advances in deep learning (DL) have led to human-level performance on certain visual recognition and natural
language processing tasks. Moreover, research has revealed shared computational principles in humans and DL models
for vision [1–5] and language processing [6–8]. These findings do not imply that DL has fully captured how these
processes operate in the human brain, but DL has definitely contributed to better characterizing the computational
principles underlying them. Can DL similarly contribute to studying Theory of Mind (ToM)?

ToM is an essential ability of humans to infer the mental states of others, such as, for example, their perceptual states,
beliefs, knowledge, desires, or intentions (for review [9–12]). For instance, one crucial milestone for ToM in human
children is whether they understand that a person can have a false belief, i.e., the person believes that something is
the case although in reality it is not [12, 13]. However, as we will discuss below, acquiring ToM is not equivalent to
passing a false-belief task, but rather is a complex skill that takes years to develop in humans [11,12,14]. For instance,
a child who passes the false-belief task, is still not capable to understand that a person might pretend to believe or feel
one way but actually believes or feels the opposite [12, 14]. Given the complexity of ToM it is unclear whether any of
the success of DL in vision and language tasks would carry over to ToM.

Nevertheless, it is worth investigating ToM with DL for several reasons. First, there is a pressing concern to align the
strategies discovered by DL models to human needs, desires, and values [15–17]. Furthermore, a practical goal of DL
systems is to build artificial agents that interact with, support, and understand humans. To achieve this, there might
not be a way around studying ToM because, at least according to some prominent views about communication, ToM
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is necessary for the emergence of meaningful communication and language [11,18–20]. According to this perspective,
the only way to build agents that can communicate with humans or each other in a meaningful fashion is to understand
and develop ToM capabilities.

Finally, given that there is still much controversy about ToM even in humans [9, 10, 12, 13, 21, 22], modern DL tools
could in principle help to understand ToM at an unprecedented level. This is because one can open or modify individual
components of the DL architecture. For example, suppose a given theory of ToM claims specific elements of ToM. In
that case, one could try to disentangle these components in the deep neural network and selectively manipulate and
remove them. In DL systems, one can find the artificial neurons and neuron populations that model other agents and
then manipulate these components. This way it is possible to evaluate the necessity or sufficiency of specific elements
of ToM in diverse tasks. In short, work on DL can illuminate aspects of ToM that are otherwise hard, if not impossible,
to study in humans.

2 Will Theory of Mind be more challenging than vision for DL?

Four specific aspects have enabled DL to help make advances in visual recognition and in shedding light on the
processes underlying vision in the brain. 1) Appropriate training data: DL models are trained on datasets that are
directly relevant for biological vision (e.g., Imagenet [23]). 2) Built in and learned invariances: DL systems have
achieved a certain level of robustness and generalization due to the invariances implemented in the network (e.g.
convolutional kernels to achieve translational invariance) or learned from the variability in which an object is presented
in the training dataset; 3) DL systems have a training objective that is similar to biological vision: Machine vision has
the straightforward goal to accurately recognize objects in a scene (or to segment or localize them), and it is reasonable
to posit that at least one goal (if not the goal) of biological vision is also to recognize objects; 4) There exist appropriate
neuroscientific comparison data: we have a reasonably good understanding of the areas involved in vision, how they
are connected and organized. Decades of work on the visual system have revealed the visual processing hierarchy,
which can and has been compared to the hierarchy of transformations learned by DL systems [1–5, 24].

In ToM research, the connection between DL and biology is much more difficult to establish. In DL, ToM is mostly
studied with deep reinforcement learning (DRL), where the data that the agent experiences and the objective are
intermingled. The objective is only implicitly defined via the reward structure, which drives the agent’s actions. In
turn, the agent’s actions determine the reward that it experiences and thus create constant feedback. Hence, in DRL the
reward structure of the task is a central factor that determines precisely what the agent does and learns. However, in the
case of ToM, there might not exist a simple and explicit cost function or a “reward structure” that would necessarily
lead to the emergence of ToM.

The problem is further exacerbated by the fact that there is no appropriate neuroscientific comparison data. In vision,
it is relatively straightforward to present the same images to humans and deep neural networks and study the corre-
spondences between these representations [1–3, 24]. For ToM such data does not yet exist and therefore it is hard to
study the correspondence.

In addition, the datasets that are used to train machine vision algorithms have variability with regard to the exact
position, angle, etc of the objects, thus enabling invariances to arise. Even more than that, DL networks that can cope
with visual recognition tasks have in-built structural biases such as convolutions. In contrast, we have currently very
little understanding of invariances desired (to be implemented or gained through learning) to achieve a ToM that is
robust and generalizes to situations different from the trained scenarios.

3 Shortcuts in Theory of Mind tasks

When one wants to develop a DL system that plays Atari or GO, one lets the system play Atari games or GO. This
is not so simple in ToM: the fundamental problem is that no task unequivocally taps into ToM (as ToM is a complex
and multifaceted ability [12, 22]). Therefore, it is impossible to optimize DL systems directly for ToM. Instead,
researchers use tasks that, according to their intuition, need ToM. A significant problem with this approach is that even
if we humans think that one or another particular task requires ToM-like skills such as perspective taking or intention
understanding, it does not mean that the DL agent indeed acquires ToM-like skills when trained on this specific task.
The only pressure the agents experience is to maximise the reward on the task. If the reward can be obtained somehow
differently, without any ToM-like skills, the agent can learn to do so.

It has been observed that DL models learn simple decision rules called shortcuts [25]. Shortcuts are tricks that enable
the DL agent to get a high score on a particular task without using the processes the researchers intended the DL
system to have [25–27]. Given that shortcuts can arise even in vision, which is arguably simpler than ToM, then one
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should also expect these shortcuts in ToM, where the lack of a strong and specific pressure to infer hidden states of
other agents can result in DL agents learning simpler decision rules.

Regarding ToM, this problem of a shortcut is not specific to DL. Namely, there is a long-lasting discussion about
whether chimpanzees possess some ToM-like skills or whether they are using low-level cues (i.e., shortcuts) to solve
these tasks [28–31]. Given that experiments with chimpanzees are not conclusive on whether these animals with
similar brains to us are using ToM or shortcuts, we should be wary of attributing ToM-like skills to artificial agents
performing simpler tests.

To bring one concrete example from recent research, [32] were inspired by experiments done with chimpanzees, where
a subordinate animal behaved as if she had the ability to take the perspective of the other animal [33, 34]. The authors
implemented two agents (“subordinate” and “dominant”) and investigated whether the behavior of the agents revealed
some rudimentary skills of perspective-taking, similar to the experiments done with chimpanzees [33, 34]. Indeed,
after training a subordinate agent solved the task: go to food if the dominant is not observing; avoid the food if the
dominant is observing (Fig.1).

Figure 1: ToM vs shortcut in artificial agents solving a perspective-taking task. Left Example of an environment
state in the task. The dominant agent is marked with the red square, the subordinate agent with the green square. The
visual field of the dominant agent is surrounded by red dashed lines, the visual field of the subordinate with green
dashed lines. Right, top Based on human behavior one could think that the agent on the green square infers that
the dominant agent cannot see the banana and therefore goes for the banana. Right, bottom However, the shortcut
solution is that the agent simply takes into account the orientation and the distance of the dominant agent without
inferring anything about its perspective.

In humans, the inference of whether some item is visible from the point of view of another is usually accompanied
by the possibility of imagining such a point-of-view itself [9]. Hence, in this experiment, one might assign such ToM
skill to an artificial agent that successfully solves the task [32]. Yet, a simple "shortcut" based on the position and
orientation of the other agent in relation to the food position is enough to successfully determine the agent strategy
(Fig.1). In short, given a reward scheme and a fixed environment, there are simple geometric combinations that allow
the agent to succeed without representing other agents’ perceptual states. Likewise, [35, 36] used an environment and
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task in which the DL agent could exploit simple combinations of geometrical features such as positions and distances
between elements to solve the task successfully.

Further, in game-theoretic scenarios, it is known that there exist simple strategies such as tit-for-tat (repeat opponent’s
action from the previous round) as in [37–39] which can lead to significant payoffs. In games that seemingly required
coordination or communication [40, 41], the initial configuration of targets and trajectories can determine the agent’s
actions without the need to coordinate or infer each other goals. This problem cannot be mitigated simply by suggest-
ing new or more complex tasks. For example, one recent prominent proposal has been that the card-game Hanabi is
suitable for studying ToM with DL [42–44]. However, even in Hanabi there will be statistical regularities which can
be exploited by DRL agents, making it difficult to prove that ToM-like abilities indeed contributed to solving the task.

4 Towards Theory of Mind: Beyond a task

All these previously highlighted works have tried to understand ToM as a skill that can be learned based on some
particular task. However, perhaps ToM is not a skill emerging from some task. It is not clear whether there exists a
simple and explicit cost function or set of rewards for biological systems that would necessarily lead to the emergence
of ToM. It could be a complex cost function (possibly requiring many cognitive skills) that cannot simply be optimized
by training on a specific task.

In ToM research done on humans, there are tasks like the classic "Sally-Anne" task used to measure ToM. In this task,
the child is presented with two dolls (Sally and Anne) that enact a scene wherein Sally hides a marble in the room
before leaving, after which Anne removes it from its location. ToM is displayed when the child to understand Sally’s
false belief that the marble is still where she left it (when Sally returns). However, nobody would claim that children
learn ToM by a repeated confrontation with the "Sally-Anne" task. ToM is not inherent to a task; it is a specific way
humans deal with these types of situations. So, it cannot be assumed that simply because a task might require ToM in
humans, it does so also in DRL agents. They might solve it differently, by learning a shortcut. To humans, Sally-Anne-
like tasks serve as an evaluation platform of a larger and more complex system trained independently in an open-ended
fashion.

Open-endedness departs from the single-task paradigm to an unbounded number of tasks (or even no task at all,
simply a world with different possibilities). To the study of ToM, open-ended environments could provide a fruitful
playground where agents coordinate, cooperate and compete to solve tasks and, possibly, learn similar strategies to
ToM in humans. Like human children, DL agents might need to be and learn in an open-ended environment, where
ToM skills are necessary and might be acquired through interaction with other agents. Recent work [45–49] has
shown how powerful open-endedness can be for learning complex behavior. Particularly, [48] introduces XLand, a
vast environment where multiple agents learn from a spectrum of completely cooperative to fully competitive tasks.
Agents trained on XLand learn complex strategies to solve any given task, but it is unknown whether ToM is one
of these strategies. We encourage researchers to study whether the learning of ToM-like strategies can emerge from
complex environments such as XLand.

5 Towards Theory of Mind: Which biases are needed?

It is important to note, we are not claiming that ToM-like skills would “pop out” from DL agents playing in open-ended
environments just like that. Developing ToM requires an open-ended environment, but it might take more than simply
better data to acquire ToM. Specifically, there might be several biases and constraints in the human brain which enable
acquiring ToM. Many of these biases are still unknown, but here we list some of the possible venues for exploration.

First, there could be be biases for attention. For example, recognizing and distinguishing other human beings is
important and hence there is an innate bias for attending to faces [50, 51]. In particular, preferences for faces over
similarly configured non-face objects are present in neonatal infants [52] and even in fetuses in the third trimester
of pregnancy [51]. Similar biases likely exist for drawing an infant’s attention to speech [53], hands [54], eyes, and
gaze-direction [55], and biological motion [56]. These early biases make sure that the child learns about the aspects
of the world that are informative about the minds of other persons.

Second, some of these biases might be structural. For example, the human brain has special circuits devoted to ToM
– areas, where activity is selectively evoked by tasks that involve considering the minds of other people [57, 58].
It is currently unknown whether these circuits underlie some computations or structural biases that are specific to
ToM. Similarly to convolutions – structural building blocks in convolutional neural networks that help to achieve
translational invariance in visual recognition tasks – these constraints would assist the human brain to extract the
features and the information relevant for ToM. The trouble is that we have a very limited understanding of what these
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structural biases might even be. Importantly, this question might be better tackled with the tools from DL than with
methods from cognitive science and neuroscience.

Third, research on human children has described certain steps along the way of developing full-blown ToM [12,14,59].
First, a child needs to understand that other people can have diverse desires (i.e., people desire different things). Next, a
child comes to understand diverse beliefs (i.e., people have different beliefs, even about the same situation). According
to this well-established framework, the third stage is the state of knowledge-access (where the child understands that
“something can be true, but someone without access to it would be ignorant of it”, [12]). Only the fourth step is the
stage where the child understands false belief (i.e., the child knows that something is true, but is aware that someone
else might believe something different). Finally, the authors describe a state called hidden emotion [12] or hidden
mind [14], according to which the child understands that desires, beliefs, and knowledge (i.e., internal states) might
not be apparent in a person’s behavior.

This does not mean that DL definitely has to emulate these steps to acquire ToM. However, it might be informative to
keep in mind that developing ToM takes time and usually progresses along this sequence in humans. One possibility
is that these stages might constitute a curriculum for training DRL agents [60, 61]. Alternatively, these steps might
simply constitute points of comparison and useful benchmarks. Also, the progression of these steps might also indicate
something about how easy or complex it is to acquire that stage, not only in humans but also in DL models. In
particular, it is relatively easy to learn the stage of “diverse desires”, because desires are clearly evident in behavior
and thus could be learned from visual input. On the contrary, it seems very hard if not impossible to learn the last step
(hidden mind states) from visual input alone, as the overt behavior is dissociated from the internal states in the cases
relevant to this step.

Based on the human ToM research one can say that children represent the minds of others and they acquire it in a
step-by-step manner. In other words, at least some aspects of the representation of the minds of others are learned.
Furthermore, we also know that one crucial input for acquiring full-blown ToM is language [12, 14, 62–64]. Deaf
children born to parents who do not master sign language develop ToM much later and their development is dependent
on learning sign language [12, 14, 64]. Currently, there is no evidence that the later steps of ToM (i.e. understanding
of false belief and hidden mind states) can develop without language input. Thus, DL agents in these open-ended
environments might need to be combined with the capabilities of large language models [65–68].

However, there are still many unknowns about ToM in humans [9, 10, 12, 22]. In particular, the neural and computa-
tional basis of ToM is relatively unknown and unexplored (but see [69, 70]). Historically, one research direction has
been about explaining ToM through the activity of so-called mirror neurons ( [71, 72]). However, strong criticisms of
this view ( [73, 74]) have curbed the enthusiasm of these early claims and the relative interest in mirror neurons has
decreased considerably [75]. As explained in the next section, we see such controversies as an opportunity for DL
researchers.

6 Theory of Mind with humans in the loop

Instead of waiting for these biases to emerge from open interactions with other agents or for researchers to establish
the correct structural biases needed for ToM, it might also be possible for humans to direct the DRL agents to learn
the required biases for ToM. One aspiration in DRL is to learn from experts; these can be humans or even other DRL
agents. Traditionally, methods like imitation learning (IL) [76, 77] or inverse reinforcement learning (IRL) [78] have
been used to learn a policy or reward function, respectively. These methods require experts to demonstrate the desired
behavior, which can be incredibly hard, arduous, or impossible in many interesting cases. Recent research [79–83] has
proposed variations of these methods capable of producing complex agents.

A technique that has been shown to scale with the complexity of the desired behavior is learning from human pref-
erences [79]. This method does not need demonstrations from experts; instead, it expects humans to rate some of
the agent’s trajectories and trains a reward function via supervised learning using these ratings. In contrast to more
traditional reward schemes based on handcrafted rules, the learned reward function evolves with the agent’s learned
behavior in a curriculum-learning fashion and, to some extent, reduces the description of the desired behavior to a
simple rating.

A similar but arguably more scalable approach to learning from humans is explanation-based learning. [81] propose
to use explanations as an auxiliary task. In other words, the agent needs to explain its behavior using natural language.
This study shows that explanations can bias the agent towards using features with more generalization power and, in
some cases, identify the world’s causal structure.
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The approaches mentioned above could provide a natural platform to prioritize strategies learned by the agent closer
to ToM. Humans could describe tasks requiring ToM either by rating, explaining, or both, and if possible, encourage
solutions where the agent needs to model others.

7 Evaluating Theory of Mind in DL agents

As of now, ToM in DL is usually evaluated through the performance of some task. However, as we have highlighted
in this paper, DL systems make use of shortcuts [25], i.e., they learn to utilize decision rules that are simpler than the
ones intended by the researchers.

We propose that when studying ToM with DL, the primary focus and main contribution to ToM research could be
opening up the network’s representations. For instance, research on ToM through DL could provide insights on the
debated role of mirror neurons [73, 74]. Does something akin to mirror neurons arise in the DL systems trained in
open-ended environments? What happens if one would modify or remove these neurons from the system. Tackling
these questions would be informative to all researchers studying ToM. Yet, up to now, most of the work done in DL
that examines ToM has not inspected the trained model weights, activations, or correlation with specific aspects of
ToM (see [84] for an early exception). If ToM representations of hidden variables of other agents are developed and
used by the network, it should be possible to isolate such representations.

Recently, the field of interpretability has received much attention from the research community [85–88], leading to
novel and powerful methods that enable a better understanding of the learned representations. We recommend taking
advantage of these developments for the study of ToM.

In particular, we bring to the reader’s attention the work done by [89] where the authors proposed to combine multiple
interpretability techniques like feature visualization, attribution, and dimensionality reduction to understand vision
in DRL agents. By applying these techniques to the agent’s neural network, they could identify failure cases like
hallucinations of reward-leading features or even make the agent “blind” to specific high-level features revealing how
relevant these are to the task.

More straightforward methods like linear probing [90] can also be used to test if the explicit representations on the
intermediate layers of the network encode some aspects of ToM. After a specific network component has been located
that seems responsible for some aspect of ToM, we recommend performing ablation [91] of these parts of the network
to check the necessity of those components to the task. If this network component is removed from the agent, will
it still solve the task? If it can still perform the task, it is likely that the DL agent was using shortcuts or that this
particular component is not required for performing the task.

Applying similar studies to agents trained in cooperative and/or competitive environments like XLand [48], Hide
and Seek [26] or Capture the Flag [92] could reveal ToM-like capabilities present in these agents. Moreover, these
approaches may show what pressures in the environment are important for ToM to emerge.

8 Conclusion

Theory of Mind is a central facet of human intelligence [9–11,18–20]. Inspired by the success of DL in understanding
biological vision [1–5] and language processing [6–8], over the last years a challenge has emerged to develop DL
agents that can mimic aspects of ToM.

In this paper, we surveyed papers that have investigated ToM with DL. We have observed that DL models can develop
shortcuts which means that although the researcher intends the DL system to learn ToM, the system actually might
learn a much simpler decision rule. This is a problem and a challenge, but also an opportunity for future research into
ToM.

DL architectures and their learning algorithms are not the ultimate brain-like learning system, but they do provide
scientific models [93] that can guide our understanding of higher mental functions such as ToM. So far, DL remains
our best source for working algorithms in large-scale tasks similar to those that animals have to solve. Given the
difficulty of monitoring all the relevant variables in real brains, the fact that we can open these artificial algorithms and
analyze them in detail provides a source of inspiration that we can not afford to leave unexplored.
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