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Abstract

Explanations are considered to be a byproduct of
our causal understanding of the world. If we would
know the actual causal relations, we could provide
adequate explanations. In contrast, this work places
explanations at the forefront of learning. We argue
that explanations provide a strong signal to learn
causal relations. To this end, we propose Explana-
tory World Models (EWM), a type of world model
where explanations drive learning. We provide an
implementation of EWM based on an attention
mechanism called look ahead attention, trained
in an unsupervised fashion. We showcase this ap-
proach in the credit assignment problem for re-
inforcement learning and show that explanations
provide a better solution to this problem than cur-
rent heuristics.

1 INTRODUCTION

“Explanation is to cognition as orgasm is to
reproduction”

—Alison Gopnik [1998]

To the AI community, explanations may seem like a conve-
nient accessory lying on top of a magnificent and complex
cognitive system that communicates our inner thoughts and
representations to the outside world. [Gunning, 2017, Miller,
2018, Molnar, 2019, Lundberg et al., 2020]. In contrast, cog-
nitive and social scientists have considered explanations to
be central to human learning; they are not an accessory but
a major driver of learning. [Hempel and Oppenheim, 1948,
Gopnik, 1998, Keil, 2006, Lombrozo, 2006, Williams and
Lombrozo, 2013, Woodward and Ross, 2021]. Explanations
are regarded so crucial for learning that prediction and con-
trol are thought to depend on our capacity to explain events
and build relations between them [Lombrozo, 2011]. More-

Figure 1: Explanatory World Models have two primary
sources of information: past events, or evidence (E), and an
event to be explained, the phenomenon (p). EWM explain a
given phenomenon by selecting S past events as a hypothe-
sis (H) to why that phenomenon happened.

over, explanations are known to drive exploration in humans
[Legare, 2014], leading to the scientific method.

But, what is an explanation? Explanations can take many
forms and shapes, making them challenging to define [Lom-
brozo, 2006, Doshi-Velez and Kim, 2017]. For example,
Miller [2018] refers to explanations as an abductive process
that, given an event (phenomenon), can identify the causes
(explanans) that brought about the phenomenon. Similarly,
Elster [2007] characterizes explanations in the following
manner: “To explain a phenomenon (an explanandum) is
to cite an earlier phenomenon (the explanans) that caused
it”. Accordingly, we propose Explanatory World Models
(EWM), Fig. 1, a type of world model that learns the en-
vironment’s dynamics by explaining. In the context of re-
inforcement learning (RL), typical world models learn to
predict the future directly from a learned representation of
the past i.e. from causes to effects. Instead, our approach is
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Figure 2: a) Lights environment where an agent has to turn on lights by pressing buttons. b) EWM based on Look Ahead
Attention uses cross-attention between evidence and phenomenon to rank the evidence and selects the top-S as hypothesis.
The model is trained to predict the phenomenon only from the hypothesis.

to go on the opposite direction i.e. from effects to causes.
In essence, EWMs relate a phenomenon to past events by
creating a hypothesis as to what made the phenomenon
happen.

In the following section, we characterize EWMs and pro-
pose an implementation based on attention [Vaswani et al.,
2017]. An essential aspect of EWMs is their training; the
specific definition of explanation will depend on the objec-
tive used. This work explores a predictive definition, where
a satisfactory explanation is the one that allows predicting
the phenomenon from the generated hypothesis. We show-
case EWMs in the task of credit assignment, where a reward
is redistributed to events controlled by the agent using the
relations learned by the EWM.

2 EXPLANATORY WORLD MODELS

World models internalize the dynamics of the environment
to enable planning, imagination or credit assignment. Typi-
cal approaches predict what will happen next from a learned
representation of the state; in other words, these models
associate past events with a distribution of possible future
events. In contrast, if our goal is to learn the dynamics of
the environment, would not be easier to go in the opposite
direction and use the fact that an event happened to relate it
to past events? Consider the environment in Fig. 2a where
a light may turn on after 6, 7 or 8 time steps from pressing
a button; knowing exactly when the light will turn on is
an impossible task that forces the model to deal with this
uncertainty. The real world has more complex relations that

make this task harder. Instead of dealing with a prediction
problem, EWMs face a search problem which we argue is
an easier task in complex environments.

We call this class of models, Explanatory World Models
(EWM) since they are based on the abductive nature of
explanations [Keil, 2006, Lombrozo, 2006, 2012, Miller,
2018]. Fig. 1 depicts the structure of EWMs. As with typical
world models, EWMs rely on past events or evidence (E)
but unlike them, EWMs must be provided with an event to
be explained, the phenomenon (p). The phenomenon is used
to select a subset of events as a hypothesis (H) for what
made it happen.

Although this approach does not allow to plan or learn in an
imagination space on its own, its use is twofold. First, by
working backwards it enables to perform meaningful credit
assignment. Most RL solutions to credit assignment rely
on a temporal heuristic that gives more credit the closer an
action is to a reward. This does not hold in complex environ-
ments. EWM use the learned relations to replace this heuris-
tic, more on this in the following section. Second, although
we do not explore this approach, planning and imagination
could be enabled for EWM by predicting a high-level goal
and generating hypothesis backwards, which we believe is
an approach closer to how humans plan. Additionally, we
do not conceive EWM as replacement to traditional world
models; similarly to human common sense, EWM could
provide constraints to these models.
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Figure 3: The agent needs to turn all the lights by pressing a series of buttons. The connection between buttons and lights
is specified by a causal graph. a) Chain: each button activates a light but the red and yellow buttons are disabled until a
light enables them. b) One-turns-all: the agent only needs to press the green button and wait until the lights turn on. c)
Independent: each light is turned on independently.

2.1 ATTENTIONAL EWM

In the following, we introduce an implementation of EWM
based on attention [Vaswani et al., 2017], depicted in Fig.
2b. The goal of an EWM is to create a hypothesis to why a
phenomenon happened. Similarly to the approach taken by
Tang et al. [2020], we propose to rank the evidence based
on how well it explains a phenomenon using the scale dot
product attention. Then it selects the S most relevant events
as a hypothesis, similarly to recent Mixture-of-Experts mod-
els [Fedus et al., 2021, Riquelme et al., 2021] or the RIMs
framework [Goyal et al., 2020]. The ranking of evidence is
done using cross-attention between phenomenon and evi-
dence, where the phenomenon is used to compute queries
and evidence is used to compute the keys. Note that the
value function is set to the identity. We use the differen-
tiable top-S function to select the most informative events
as hypothesis.

It is crucial to notice that we cannot directly optimize this
model; left aside that explanations are hard to define, there
may be many valid hypotheses, and ground truth for these
may be hard to collect. Instead, we propose to use a predic-
tive view of explanations that allows us to build an objective
that can be optimized for. We say that a hypothesis explain-
ing a phenomenon is satisfactory if it allows predicting the
phenomenon only using the hypothesis. Therefore, we in-
troduce a forward model to predict the phenomenon solely
from the hypothesis.

Note that since we use the phenomenon in both, the objec-
tive and the input, the model could find trivial solutions. In
other words, the model could encode the phenomenon in
the hypothesis directly, without using the semantic content
of the evidence. Allowing only S number of events in the
hypothesis creates a second bottleneck that makes easier to
encode the right semantic information than just “leaking”
the phenomenon. Since we allow the model to use the future,
i.e. the phenomenon, for ranking but not for prediction, we
call this approach look ahead attention.

Events: In this work we define an event as the delta between

observations e = o′ − o. Ideally, we would want events to
be as independent and disentangled as possible i.e., if a
piece of evidence contains multiple objects, the model will
assign all these objects as hypothesis. Learning disentangled
representations is an important line of research that we hope
to see evolve in the near future but that we circumvent by
having an environment where only one event at every time
step can happen. As in Ramesh et al. [2021], it would be
prohibitive for the EWM to work directly with pixels, thus
we first use a Discrete VAE to create a low-dimensional
representation of each event before passing it to the EWM.
The discrete codes are then transformed into a continuous
representation using linear embeddings. Additionally, we
add relative positional encodings [Dai et al., 2019] to events.

Controlled events: An important factor when planning,
imagining or doing credit assignment; is the ability to know
what changes in the environment were caused by the agent.
This is particularly important in the task of credit assign-
ment where reward must be given only to actions that made
the reward happen. To achieve this, we include the action
performed by the agent as an additional piece of evidence.
As done in Corcoll and Vicente [2020, 2021], if the model
needs to use the action to predict the phenomenon, we say
the phenomenon was controlled by the agent. Actions are
transformed using a linear embedding layer to match the
size of the rest of events. Note that special care needs to be
taken when computing the temporal mask since we want to
only reveal the last action taken. Similarly, the positional
encoding for each action must be the same, regardless of
where in the sequence it is.

Training and setup: We implement the Discrete VAE using
convolutional layers. The query and key transformations of
the look ahead attention module are two-layer MLPs with
ReLU activations. Similarly, the forward model is a three-
layer feed forward network with ReLU activations. We first
train the Discrete VAE in isolation with samples collected
by a random policy. Then, the attentional EWM and forward
model are trained end-to-end to predict the discrete codes
of the phenomenon produced by the frozen Discrete VAE.



Figure 4: Vanilla PPO (green) stops solving the task when
the discount factor is lower than 0.8. Using EWM to re-
distribute reward allows the agent to learn even with low
discount factors and low redistribution factor (β).

3 REWARD REDISTRIBUTION

An arguably underexplored area of RL is credit assignment.
The predominant approach to this problem is to propagate
reward based on a simple heuristic: the closer the action is to
the reward, the more important it is for that reward to happen.
Unfortunately, this approach only works in environments
with dense rewards but fails in sparse reward environments
where temporal correlations between events do not work,
making the learning highly inefficient.

Instead, explanations create a relational directed graph be-
tween events where the immediate neighbors of a phe-
nomenon are events in the hypothesis. We can exploit this
graph and redistribute reward to events that made the phe-
nomenon happen. Since our implementation takes the top-S
events, we remove neighbors with attention weights lower
than a set threshold. In RL we typically reward actions, not
events; thus, reward is redistributed only to events controlled
by the agent (i.e., events where the action is part of the hy-
pothesis). Moreover, we can iteratively explain events in
the hypothesis and redistribute reward accordingly. Note
that this approach allows us to redistribute reward over arbi-
trarily long horizons, the only requirement is that relations
between two events fall in the same attention window. In
practice, we limit how deep we go into the graph by reduc-
ing the reward at each level and stop the redistribution if
the reward is below 0.1. Finally, the reward to the action of
each controlled event is given by

ri = βir (1)

where β is the redistribution factor between [0, 1] and i
indicates the level in the graph. The higher the redistribution
factor the deeper in the graph the reward will travel.

4 EXPERIMENTS

Our experiments explore the following questions. 1) can
these relations be used to redistribute credit so as to achieve
more efficient learning? and, 2) can the Attentional EWM
learn the right relations between events under different un-
derlying dynamics?

For all our experiments we use the Lights environment Fig.
2a where an agent needs to turn on the lights by pressing a
set of buttons. To evaluate how well EWM deal with delays
between events, a light will turn on 7 steps after pressing
the corresponding button or the previous light turns on. The
connectivity between lights and buttons is determined by a
causal graph. In some cases, buttons may be disabled until
a light is turned on. The three different causal graphs used
in this work are shown in Fig. 3. In these experiments we
train a EWM for each variant with samples collected using
a random policy.

4.1 CAN EWM PROVIDE A MORE EFFICIENT
LEARNING?

Here, we want to analyze if redistributing credit using the
EWM provides a more efficient learning than traditional
credit assignment. In this experiment, we train a PPO agent
with and without redistribution using different discount fac-
tors and redistribution factors on the Chain variant Fig. 3a).
Fig. 4 shows how different discount and redistribution fac-
tors affect the learning. A vanilla PPO agent has a hard time
solving the Chain variant when the discount factor γ reaches
0.8. On the other hand, our redistribution method allows the
agent to learn even when both, discount and redistribution
factors are low.

4.2 DOES EWM REDISTRIBUTE REWARD
CORRECTLY?

Here we analyze the relations learned by the EWM and how
the reward is propagated in a single episode after training the
agent. The following results use a PPO agent with discount
factor 0.8 and (if applicable) redistribution factor of 0.8.

4.2.1 Chain variant (Fig. 3a):

Fig 5 presents the results on the chain variant, blue line
denotes the learned value function at the end of training and
green line is the reward assigned to each time step.

On the left, a PPO agent trained without any reward redis-
tribution and discount factor of 0.8. Vanilla PPO fails to
propagate reward to far enough events. Relevant events hap-
pening far from the reward get little attention and irrelevant
events close to the reward too much. Traditional methods
have a hard time propagating reward to the right events.
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Figure 5: PPO without (a) and with (b) reward redistribution after training on the chain variant. The EWM model can
identify the right relations between events and redistribute the reward to key actions.

In contrast, the plot on the right shows a PPO agent trained
with the reward redistribution method proposed in section 3
and discount factor of 0.8. Here the right events (pressing
buttons and moving to those buttons) are rewarded.

4.2.2 One-turns-all variant (Fig. 3b):

This variant has long delays between action and reward.
Here, the agent only needs to press the green button and
wait until every light turns on. Pressing other buttons does
not have an effect on the lights nor reward.

As shown in Fig. 6a, the model learns the right relations
and reward is not given to pressing other buttons nor to the
lights turning on since these are not directly controlled by
the agent. The model learns to reward the button that causes
the lights to turn and the movement of the agent necessary
to get to the button.

4.2.3 Independent variant (Fig. 3c):

Here each light is turned on independently and only once
all lights are on the reward is given. The complexity of this
environment is to relate multiple events to the reward. In
previous variants, the reward was always given when the
yellow light turned on. Note that here the event of getting a
reward can happen when any of the lights turns on but the
reward is caused by all the lights turning on.

The results in Fig. 6b show that the EWM can correctly
identify that the yellow, red and green buttons caused the
reward to happen. Unfortunately, the red and yellow buttons
are not in the direct neighborhood of the reward since the
model needs to go deeper in the graph (note that the height
of the reward indicates the depth in the graph).

5 RELATED WORK

Credit assignment: multiple methods have been devised to
improve the credit assignment problem: RUDDER[Arjona-
Medina et al., 2019], TVT [Hung et al., 2019], SECRET
[Ferret et al., 2020] and Synthetic Returns[Raposo et al.,
2021]. All these methods learn relations between events and
reward. A drawback of relying on reward to build a model
of the world is that there is no learning until a reward is
discovered. This is counterproductive since the dynamics
of the world are typically stable and can be learned even
without seeing any reward. EWM learns how events relate
to each other and uses the learned relations to propagate
reward to the causing actions.

Slots: RIMs framework [Goyal et al., 2020] and Slot-
Attention[Locatello et al., 2020] learn to route information
to slots. By limiting the number of evidence the forward
model can use, EWM creates an additional bottleneck.

6 CONCLUSIONS

In this work, we have argued that explanations are not an ac-
cessory to learning but a central component. To this purpose,
we have introduced a class of models called Explanatory
world Models (EWM) and proposed an implementation
based on attention. We showcased EWM in the task of
credit assignment where our experiments demonstrated that
this approach can greatly reduce the sample inefficiency of
traditional approaches.

In future work, we want to expand EWM to environments
with more complex dynamics. Another open question is
how can events be learned in these complex environments?
Additionally, explanations are know to drive our curiosity,
would agents rewarded by finding phenomenons hard to ex-
plain explore better? Finally, can world models for planning
or learning in imagination benefit from obeying constraints
imposed by a EWM?
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Figure 6: a) Reward is not redistributed to non-causal events (red button). Moreover, reward is also not given to uncontrolled
events (lights). b) The EWM is able to identify that pressing all the buttons was what caused for receiving a reward.
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